
APPENDIX D

Technology Tools and Techniques

Project EASI/ED D-i Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

Appendix D - Technology Tools and Techniques

Table of Contents

D.1 Technology Tools D-1

D.2 Component Delivery D-9

D.3 Introduction to UML D-29

D.4 Legacy System Components D-33

Project EASI/ED D-ii Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

EXECUTIVE SUMMARY

Successful delivery of the software supporting the Modernization Blueprint is critically
dependent upon the technologies, tools, and methods used for system building, analysis and
design, code repositories, class libraries, testing, and component-based development (CBD).
These tools and technologies are described in this Appendix.

Section D.1 is organized by classification of tool and technique. First, the classification is
defined and briefly described. Then, tools and technologies for each classification are presented.

SFA identifies CBD as a tool critical to the success of the Blueprint. Since designing and creating
components is a relatively new discipline, industry practice is still being defined and refined. We
recommend that ED/SLCDM be supplemented in the area of component design and recommend
the Catalysis methodology for this purpose. Catalysis is the dominant methodology for
component design, is publicly available, and is supported by several vendors.

In this scenario:

• ED/SLCDM provides the overarching SFA development life cycle linked to management
and reporting functions. Business and domain modeling is performed under the
ED/SLCDM.

• Component modeling and specification is conducted using Catalysis.

• The ED/SLCDM is used for component implementation as well as taking component
specifications through outsourcing, reuse, re-engineering, or development into operation.

Section D.2 describes in detail the life cycle, tools, technologies, and supporting methodologies
for CBD.

Section D.3 presents an introduction to the Unified Modeling Language (UML).

Section D.4 discusses legacy system components and CBD

Project EASI/ED D-1 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

D.1 Technology Tools

As software becomes larger and more complex, the size of the team needed to complete the
development process increases. On large-scale projects, this team often will consist of
application designers, programmers, graphical interface designers, product testers, technical
writers, build engineers, product support staff, and management. On smaller projects, the same
team member often handles several of these tasks. When the development team grows past the
single programmer, the advantages offered by development tools that facilitate teamwork and
collaboration quickly become apparent. With larger teams, such tools are a necessity.

The following subsections will discuss the process support and management tools for software
development projects:

• Subsection D.1.1 Analysis, Modeling, and Design
• Subsection D.1.2 Software Configuration Management
• Subsection D.1.3 System Building
• Subsection D.1.4 Automated Software Testing and Quality Assurance
• Subsection D.1.5 Software Project Management
• Subsection D.1.6 Reusable Class Libraries
• Subsection D.1.7 Code Repositories

D.1.1 Analysis, Modeling, and Design

Analysis, modeling, and design tools assist in generating requirements for applications, including
data definitions, business rules, and programming specifications. These tools typically use
formalized methods and approaches derived from research in computer science and computer-
aided software engineering (CASE). They are used in the analysis and design phases to create
models with different levels of detail and depth. Modeling and design data are defined centrally
and stored in a shared repository. A good model can be understood and critiqued by application
experts who are not programmers.

When considering analysis tools, the words “requirements management” (RM) should come to
mind. A software requirement can be defined as “a condition or capability to which the system
being built must conform.” RM is the process used to ensure that a system conforms to its
expectation. Since there are several types of requirements at different levels of detail, which vary
in importance and difficulty, it is important to keep a history of each requirement and its
associated details. Two key features of a RM tool are the ability for viewing the requirements
and their attributes as well as the ability to show traceability (to define a relationship between
requirements). Leading RM tools are Rational RequisitePro, Quality Systems & Software
DOORS, IcCONCEPT-RTM, SLATE REquire, and Technology Builders, Inc.Caliber-RM.

There are typically two classes of modeling and design tools: CASE products and lightweight
modeling tools. The primary distinction between older CASE products and newer or updated
modeling and design tools is the latter has a less-rigid structure, greater process flexibility, and
the ability to integrate with other development tools. The most basic feature of the modeling and
design tools is support for diagrams and drawings, typically using customizable icons for
notations and symbols.

Project EASI/ED D-2 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

Lightweight modeling tools for database applications have become more prominent with the
increase in client/server development. Many of these tools now directly support object-oriented
systems with models and diagrams useful in designing and documenting the object classes and
inheritance to be used in a software project. Advanced features considered desirable in these
lightweight tools are the ability to export the requirements to a skeleton of the source code (by
use of code generators) and to import or update the data model from changes made in the actual
source code (reverse engineering). Popular lightweight database modeling tools used for
client/server applications include products such as Logic Works’ Erwin and Sybase’s Powersoft
PowerDesigner (formerly S-Designer). At the high end are tools capable of modeling mainframe
and client/server applications, such as Software Through Pictures from Aonix.

D.1.2 Software Configuration Management

Software configuration management (SCM) tools are used by application development teams to
provide software revision control, source code versioning, and release management capabilities.
Other more advanced features include process management and the ability to track requests for
changes and bugs discovered during testing. Development team members are required to check
out models, specifications, source code modules, documentation, and other files from a central
repository before making changes and then check these files in after changes have been made.

The SCM tools available from various vendors usually provide most of the following capabilities:
version management, support for distributed development teams, integrated change request
management, customizable compile and build environments, and basic processes for code
versioning and promotion. These vendor tools differ the most in their support for these features:
large-scale distributed teams, Web access for reporting or version management, special support
for Year 2000 teams, degree of process orientation, and ability to integrate with other
development tools.

SCM tools preferred by mainframe application developers include Computer Associates’
Endeavor, Intersolv’s PVCS and PCMS, and Platinum Technology’s CCC/Harvest. UNIX
programmers gravitate toward the RCS/CVS tools available with UNIX as well as enhanced
products, such as IBM’s TeamConnection, Mortice Kern Systems’ Source Integrity, Perforce’s
Perforce, Rational Software’s Pure Atria ClearCase, and Starbase’s StarTeam. ClearCase and
TeamConnection go a step further than other tools and support archiving the complete build
environment, including the development tools (the language compiler and library files, for
example) used in the build process.

Some SCM tools also focus on process control in addition to the traditional version control
functions. These products offer features for organizing and controlling the processes and
procedures as they are used in software development and deployment. Table D-1 summarizes
these processes and procedures used in software development and deployment. Vendors with the
most process control focus are Continuus Software Continuus/CM and Platinum Technology
CCC/Harvest. Products from IBM, Rational Software, SQL Software, and TRUE Software also
include a strong infusion of process control.

Project EASI/ED D-3 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

Capability Description
Version Identification Versions and releases can be assigned identifiers automatically

when they are added to the system. Some tools support the
assignment of attribute values for identification.

Change or Version
Control

Versions of components must be checked out explicitly to make
changes. The team member making the change is recorded
automatically. When the changes are checked in, a new version is
created and identified with a tag. The old version is never
destroyed or overwritten.

Storage Management Version management tools provide features to reduce the storage
space required by the different versions. Most tools try to minimize
storage by describing each version in terms of its delta or difference
from a baseline version.

Build Environment To replicate a build, versions of development tools and ancillary
files (compiler “include” files, for example) used in the process also
must be managed and archived under change control.

History Recording All changes made to a module or system are recorded and listed.
Table D-1: Software Configuration Management Capabilities

Microsoft offers Visual SourceSafe, a low-end version-management tool that integrates directly
with Visual C++, Visual Basic, and Visual J++ integrated development environments (IDEs).
Visual SourceSafe is bundled with Microsoft’s Visual Studio Enterprise Edition. As a result,
Microsoft implicitly has endorsed the use of source code management and is exposing a large
number of small developers to these concepts. Microsoft also publishes a set of developer APIs
that allows other vendors to integrate SCM tools into the Microsoft IDEs. This allows a
migration path for users who outgrow the basic Visual SourceSafe capabilities and require a more
robust and full-featured SCM product. Inprise now bundles a version of Intersolv’s PVCS with
its Delphi, JBuilder Enterprise, and C++ Builder Enterprise suites.

D.1.3 System Building

In modern program development, it is common to use tools that automate the build process of an
application and ensure the latest approved source code files are being compiled. Most of these
build tools are based on the "make" utility originally developed on UNIX. The purpose of these
tools is to identify and perform the minimum amount of work needed to build a new version of
the application. For example, there is no need to recompile a module that has not changed since
the last compilation.

There are three steps in the system build process:

Step 1: Generate or create the dependency structure;
Step 2: Compile source code; and
Step 3: Link object-code modules.

System building tools require a list of components or modules needed for a specific build, a
structure that documents the dependency between various components, and information about
where these files are stored. Some build tools can create the dependency structure automatically
from a list of files. Many modern compilers support an option to generate this file dependency
list while parsing the source code. Other tools, such as "makedepend" that is bundled with the X
Window System on UNIX, can identify these dependencies. Without these tools, this

Project EASI/ED D-4 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

dependency structure must be created manually. Opus Make with MKMF from Opus Software is
a third party "make a make file" tool that can generate these dependencies automatically. It runs
on a variety of platforms and has numerous features that are missing from standard "make"
packages.

The most recent advance available in some of these tools is a parallel and distributed "make"
feature. Parallel "make" takes advantage of multiprocessor machines, spreading the build process
across multiple processors in the same machine by executing parallel compiles of different source
files. Distributed "make" spreads the work across multiple computers in a distributed
environment. The goal of a parallel or distributed make feature is to shorten the time needed to
rebuild the application. SunSoft’s Workshop integrated environments are bundled with a parallel
"make" facility. The freely available GNU "make" utility often used in UNIX environments also
supports parallel "make."

The last step in building an application is the linking phase. In this step, the numerous object-
code modules that constitute an application are brought together and linked into one whole. The
link step can be slow and resource-intensive, especially on large projects. The most advanced
linkers implement incremental linking, in which only the modified modules are relinked, rather
than relinking all parts of the executable program from scratch every time a single module is
changed. This process results in significantly shorter link steps. On UNIX systems, incremental
linking is included in GNU C++, HP Softbench, and SunSoft’s Workshop products. Rational
Software’s PureLink provides the same function in a stand-alone linker product for UNIX
platforms. Inprise’s C++ Builder, Microsoft’s Visual C++/Visual Studio, and Watcom’s C++
support this capability on the PC.

D.1.4 D.1.4 Automated Software Testing and Quality Assurance

Automated software testing and quality assurance tools represent a wide range of processes and
technologies used to ensure that software does not contain "bugs."
The tools in this category have been divided into the following subsections:

• Subsection D.1.4.1 Static Analyzers
• Subsection D.1.4.2 Software Metrics
• Subsection D.1.4.3 Execution Profilers
• Subsection D.1.4.4 Defect Testing, GUI Testing, and Load/Performance Testing
• Subsection D.1.4.5 Run-time Error Detection
• Subsection D.1.4.6 Code Coverage

Table D-2 summarizes the classification of these tools.

Project EASI/ED D-5 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

Approach Description
Static Analysis Analyzes the source code to locate potential defects in

programming.
Software Metrics Analyzes the source code or documentation and generates metrics

based on complexity.
Execution Profilers Determines how much time is spent during execution in various

functions and components to locate the heavily used sections that
could be limiting performance.

Defect Testing Automates finding areas where the program does not conform to its
specifications, usually based on a test manager application using
specially created application test suites.

GUI Testing Test the GUI component of an application by simulating user
keystrokes and mouse movements.

Load/Performance
Testing

Stresses the application by running it with heavy simulated
workloads to determine its load/performance characteristics.

Run-time Error
Detection

Monitors and locates certain classes of run-time errors, particularly
memory leaks.

Code Coverage Determines how much source code in an application is covered by
automated tests and defined test suites.

Table D-2: Software Testing and Quality Assurance Tools

D.1.4.1 Static Analyzers

Static analysis tools, such as the "lint" utility used with C files, are designed to check the source
code for potential programming errors. These tools are called static because they analyze the
source code rather than the running program itself. Modern static analysis includes sophisticated
checks on control flow, data use, function interfaces and parameters, information flow, and paths
of execution. Static analyzers for C source code are Compuware CodeReview, Gimpel Software
PC-Lint Gimpel Software FlexeLint, and IPT’s lint-PLUS.

Several static analyzers for checking Fortran source code are available, including Cobalt Blue’s
FOR_STUDY, IPT’s FORTRAN-lint and FORTRAN90-lint, Leiden University’s ForCheck,
Polyhedron Software’s plusFORT GXCHK tool, and Quibus’s ForWarn. The FEI product from
IPT is unusual in this regard; it represents an example of the integration of static analysis
(FORTRAN-lint) with other powerful development and reverse-engineering tools that make up
Cayenne Software’s Ensemble package. (In August 1998, Cayenne merged with Sterling
Software.)

D.1.4.2 Software Metrics

Software metrics is another form of static analysis. The tool parses the source code and assigns
values based on complexity and other measurements to lines of code, functions, and components
to indicate where the more complex, less-understandable, and statistically more error-prone
programming occurs. Similar metrics for complexity and readability can be applied to
documentation files. Based on these metrics, it is possible to focus testing in the areas that have
been identified as more error-prone. Tools that determine software metrics include McCabe and
Associates’ Visual Quality Toolset, which is available on UNIX and Windows and can analyze
code in Ada, C, C++, COBOL, Fortran, Pascal, PL/1, Visual Basic, and several other languages.

Project EASI/ED D-6 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

D.1.4.3 Execution Profilers

Execution profiling tools, bundled with many integrated development environments, monitor a
specially linked version of the running program and report how much processor time is used in
executing each line of program code. This information helps developers pin-point areas that
should be targeted for optimization and performance improvement efforts. UNIX systems
include the "gprof" command-line utility for this task. The newer profiling tools incorporate an
easy-to-use graphical front end for controlling profiling and reviewing the results. Compuware’s
TrueTime products on Windows 95/98/NT, Intel’s VTune on Windows 95/98/NT, and Rational
Software’s Pure Visual Quantify available on UNIX and Windows NT represent enhanced
profilers with graphical interfaces. There is also increasing interest in profilers that support Java
development such as Compuware’s TrueTime for Java, Intel’s VTune, Intermetrics’ JWatch, and
KL Group’s JProbe.

D.1.4.4 Defect Testing, GUI Testing, and
Load/Performance Testing

Software defect testing usually is handled by tools that run the application through predefined test
suites. Automated defect testing can be applied to unit testing of individual components, module
testing of a collection of dependent components, and system testing of the entire application.
Tools are also available that automate testing for defects in the GUI and the interaction between
the client and server.

A new category of load-and-stress testing can also be applied to client/server and Web-based
applications to ensure reliability, robustness, and performance. Major vendors of GUI and
distributed client/server testing tools are Mercury Interactive, Rational Software (having acquired
SQA), and Segue Software. Tool vendors that offer automated testing of mainframe applications
include Computer Associates, Compuware, Cyrano (formerly IMM and Performance Software),
and IBM. Vendors offering load testing tools include Cyrano and Rational Software.

D.1.4.5 Run-time Error Detection

One of the most popular categories of products now used for quality assurance of C and C++
programs is run-time error detection. These products check for memory management problems
(memory and resource leaks and other heap errors) as well as parameter or range errors that occur
when calling operating system or library functions. These tools interface with the application and
the operating system or libraries to track memory management calls and other system function
calls to catch parameter errors dynamically at run time. Run-time error detection tools for C/C++
include Compuware’s (formerly NuMega Technologies’) BoundsChecker (MS-DOS, Windows
3.x/95/98/NT), Parasoft’s Insure++ (UNIX and Windows 95/98/NT), and Rational Software’s
Purify (UNIX and Windows 95/98/NT). Compuware also has introduced SmartCheck, a run-time
debugging tool for Visual Basic that automatically detects and diagnoses errors and translates
vague error messages into more detailed problem descriptions. Other products that have run-time
error checking built in are the C/C++ development environments from CenterLine Software and
SunSoft’s Workshop tools.

D.1.4.6 Code Coverage

A code coverage tool measures what portion of the source code for an application is actually
executed during automated testing. The goal is to test as high a fraction of the code base as
possible. Run-time error detection and code coverage are often included as background processes

Project EASI/ED D-7 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

while automated defect testing is running. Visual tools in this category include Parasoft’s TCA
(bundled with Insure++) and Rational Software’s Pure Coverage available on UNIX and
Windows 95/98/NT.

D.1.5 Software Project Management

Project management involves planning and scheduling software development projects. Another
important component of project management is tracking changes in user requirements over the
lifetime of a software project. Several packages can be used to manage staff and resources as
well as produce time lines, critical-path diagrams, and project evaluation and review technique
(PERT) charts. Tools also are available to estimate the costs associated with a software project.
Currently, a large number of these products are targeted specifically for estimating costs
associated with Year 2000 mitigation projects. Two software project management tools are
Microsoft Project and Software Productivity Research KnowledgePLAN.

D.1.6 Reusable Class Libraries

For years, language compilers have included run-time libraries to support functions and
operations that are required by the language standards but are not directly part of the
programming language. For example, Fortran compilers come with a large library of
mathematical and other functions that are defined by the Fortran 90 standard but must be
implemented outside the language compiler. One enduring strength of C has been the definition
of the standard C library, which includes a large collection of portable functions for I/O, character
and string handling, mathematics, and other purposes. The C++ language standard defines a
similarly rich standard C++ library, the cornerstone of which is the standard template library
(STL) of generic container classes.

One key benefit of an OO language (Smalltalk, for example) is its class library, a repository of
reusable code that has been refined and cultivated over time. Libraries of reusable classes and
components for most of the popular OO languages are available on the Internet.

Several companies now sell mature and tested class libraries designed for a particular set of tasks.
This option allows development teams to buy reusable class libraries as an alternative to building
the classes themselves. Rogue Wave Software sells a large collection of popular C++ class
libraries that are available across platforms (MS-DOS, Windows, Macintosh, OS/2, and most
versions of UNIX) and can be purchased in both source code and object form. These class
libraries include basic tools, the STL, mathematics, and database access, networking, and
financial functions. Rogue Wave Software’s Tools.h++ class library is also bundled with many
of the major C++ compilers and development environments. Many C++ class libraries have been
rewritten as Java class libraries and are now becoming available. Rational Software also offers
C++ and Java class libraries targeted for specific applications. Many vendors now sell software
components designed to work with Visual Basic, C++, Inprise’s Delphi, and Java.

ILOG, one of the largest software components vendors, began shipping its JViews product in late
1997. JViews is a pure Java library of sophisticated graphical objects, behaviors, and data
structures. KL Group also sells a set of highly regarded Java components. KL Group began
shipping JProbe, its Java profiler, in March 1998. JProbe is an interesting product for KL Group
because it takes the company beyond the components business and into the tools arena.

One interesting class library for networking is the Adaptive Communication Environment (ACE)
toolkit originally developed by Doug Schmidt at Washington University. The ACE toolkit is a

Project EASI/ED D-8 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

large, rich framework of high-level C++ classes for writing portable network applications on
UNIX and Windows 95/98/NT. It uses design patterns, a recent advance in software
development technology, in the design of its C++ classes. A version of the ACE toolkit
implemented in Java also is available. The ACE toolkit is provided as freely available source
code and has been ported to most UNIX systems and Windows 95/98/NT.

D.1.7 Code Repositories

Code repositories offer hope for greater code reuse. The primary problem a development
organization faces is the work involved in creating a useful repository. For code repositories to
work effectively, software development teams need to be in agreement on processes,
classification procedures, and other criteria. Several vendors now offer software tools that
facilitate setting up and maintaining code repositories, but these are only as good as the
procedures actually employed by software developers. Vendors offering software for creating
and maintaining code repositories include Intersolv, Platinum, Rational Software, and Transtar.
Some high-end development tools (Sterling Software’s COOL:Gen, for example) are adding code
repository capabilities in their latest releases. This market still is in its infancy.

Project EASI/ED D-9 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

D.2 Component Delivery

Developing software applications from reusable components is termed component-based
development (CBD). The technology might be more aptly called, “application delivery through
the assembly of software components”. Components are a means for delivering enterprise
business applications. The subsections listed below describe the tools, technologies, and
methodologies for application development using components, as applied to the requirements of
SFA:

• Subsection D.2.1 Introduction
• Subsection D.2.2 Strategic Directions for Component-Based Development
• Subsection D.2.3 CBD Tools
• Subsection D.2.4 Methodologies for Component Design
• Subsection D.2.5 Recommendations to SFA
• Subsection D.2.6 Tool Support for Catalysis

D.2.1 Introduction

The ability to create and deliver large software applications on a predictable schedule in a rapidly
changing environment has not matched the growth of hardware and network capacities. Large
package applications such as PeopleSoft and SAP can be an alternative to custom code.
However, packages require long and expensive implementation and integration projects and it can
be expensive and difficult to customize packages to a user’s business needs. OO design and
distributed objects are proving to be successful in large software projects. The discipline of OO
design, however, takes time to grow in a development team. CBD promises to address these
problems. First, component-based applications are designed to be flexible, with the ability to
adapt to the changing requirements of business and technology. Second, components can
increase the speed with which applications are developed and delivered. Third, component
design and assembly does not require object-oriented techniques. Finally, components provide a
means of integrating legacy applications and current technologies.

The basic design principles of components are simple and can be implemented in a variety of
technologies. Central to the notion of components is one basic idea: designing an application
using components is designing for reuse, not for obsolescence. A component:

• separates what is performed from how it is performed;

• sets up specific boundaries between functions;

• has no unexpected side effects or interactions with other components;

• provides services around which applications can be constructed;

• requires design architecture; and

• demands good documentation.

Components are built to deliver one or more services within an application. A design focused on
services separates the capability of an application from its technical implementation. A software
component’s services are accessed through an interface, which must be consistent (i.e., work the
same way every time) and published (i.e., tell other components how to use it). Constructing an

Project EASI/ED D-10 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

application begins by identifying the services required, then gathering the components that offer
those services. Connecting the components builds the application.

The service provided by a component isolates that component from the consumer of its services.
Microsoft defines a service as “a set of functionality that supports activities and/or yields
information. A service is accessed through a consistent, published interface. A service represents
some computing capability. A description of this capability can be used to represent a contract
between the provider of the capability and the potential consumers. Using the description, an
arm’s-length deal can be struck that allows the consumer to access the capability.” [Microsoft,
1996].

The creators of the Catalysis method for component design (D'Souza and Wills, 1998) present the
following definition of component:

A component is “an independently deliverable unit of software that encapsulates
its design and implementation, and offers interfaces to the outside, by which it
may be composed with other components to form a larger whole.”

CBD is then a means of creating software applications from prefabricated, pre-tested, and
reusable pieces of software. An application assembled from components would be flexible and
could be built and rebuilt quickly. In designing and assembling an application, the designer
wants to draw from a catalog of components, each plug-compatible with the other, each with a
clear and obvious function. Achieving this kind of interoperation and flexibility requires a high
degree of standardization. Achieving standardization requires a disciplined approach to the
design, development and deployment of components

D.2.2 Strategic Directions for Component-Based Development

No single CBD direction dominates the market today. Industry analysts single out four major
strategic directions for CBD:

1. Enterprise JavaBeans (EJB) and CORBA, the Sun Microsystems and Object
Management Group (OMG) component model.

2. COM/DCOM, the Microsoft component model.
3. Component models promoted by the major package software vendors such as SAP,

PeopleSoft, and Oracle.
4. Components created by development tools, promoted by tool vendors such as Forte,

Sterling and Platinum.

Before discussing the strategic directions for CBD, it is essential to establish a distinction
between objects and components. An object might be a component but a component is not
necessarily an object.

• Components provide coarse-grained functionality that can be understood by business
users. Objects tend to be much smaller pieces of functionality, of a more technical
nature.

• Components are usually defined through interface standards such as COM/DCOM or
CORBA whereas objects typically rely on low level programming languages.

• The internal workings of components are concealed (the technical term is encapsulated).
On the other hand, objects are not completely encapsulated because of their property of
inheritance. An object class can be defined as a subclass of another (parent) class, and it
will inherit the attributes and methods of this parent class. This allows reuse of the

Project EASI/ED D-11 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

existing class structures when defining new objects, but it compromises encapsulation for
components because some knowledge of the existing classes internal workings are
required.

Table D-3 presents a list of other properties contrasting components and objects.

Components Objects
 Business-oriented
Coarse-grained
Standards-based
Multiple interfaces
Provide services
Fully encapsulated
Understood by everyone
Open standards

source: Select Software

Technology-oriented
Fine-grained
Language-based
Single interface
Provide operations
Use inheritance
Understood by developers
Proprietary standards

Table D-3: Components and Objects

As component technologies and their supporting tools continue to evolve, the distinction between
CBD and the straight OO approach to design, construction, and implementation will become
more apparent.

D.2.2.1 EJB and CORBA

CORBA was developed by OMG, an industry consortium. Work on CORBA began in 1989,
long before anyone was using the term “component”. OMG created CORBA to enable objects to
communicate with each other in a variety of different languages across a number of different
platforms.

EJB grew out of the Sun JavaBeans initiative. Enterprise Java Beans are Java-language
components for building applications. They differ from pure objects in that EJBs have an
“external interface”, called the deployment descriptor, which allows a tool or other EJB to read
what the component is designed to do and to connect it up properly to other EJBs. EJBs are
designed to operate on a server, using a set of interfaces that allow them to delegate the work of
managing services such as security, transactions, and persistence to an EJB container. Containers
provide management and control services, isolate the EJBs from different hardware and operating
systems, and ensure consistent services are available to the EJBs. By providing a consistent set of
service interfaces, EJB containers isolate the EJBs from the details of different underlying
middleware such as transaction monitors or object request brokers. When EJB containers are
married together via CORBA, their components interoperate in a distributed, multi-tier,
enterprise-wide environment.

January 1999 saw the release of Sun’s Jini. Built on Java technology, Jini organizes Java
components into a flexible, distributed system. Under the Jini infrastructure, components can be
added and removed at will. Jini will benefit CBD by promoting the development of entire systems
based upon components and providing a new mass market for Java components. Jini will further
the design of services-based architectures which are essential to component design. On the other
hand, because Jini is so new, the challenges of real-world implementation are not well
understood. Early adopters take on considerable risk.

Project EASI/ED D-12 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

IBM’s SanFrancisco project is designed to help application developers build distributed, object-
oriented business applications. It is a collection of business objects (such as accounts payable,
accounts receivable, and general ledger) written in the Java language conforming to the EJB
component model. By offering a framework for business objects on a large number of IBM
platforms, SanFrancisco should attract software vendors to build components for the large
installed base. IBM plans to use EJB to unify its wide range of computer platforms to a single
standard.

For applications deployed at the enterprise level, EJB/CORBA holds a major share of the
marketplace, supporting a growing third-party component market. Compared to COM/DCOM
however, the EJB/CORBA market is small and immature. The market is complicated by two
factors. First, the standards process to which OMG adheres slows the adoption of standards for
the OMG business object component architecture. (Work has begun on the design of components
for vertical industries, but products are not ready for release.) Second, Sun continues to evolve
the EJB specification, presenting a challenge to developers who prefer a stable design base.
Nevertheless, EJB and CORBA are attractive in environments requiring platform-independent,
reusable, distributed components.

D.2.2.2 COM and DCOM

Microsoft has been promoting COM, its component object model, as its alternative to CORBA
for distributed software component architecture. DCOM refers to distributed COM, which is the
means for communicating among COM objects over a network. DCOM reflects the evolution of
the Microsoft component model that began with the linking of application components on a single
desktop and evolved to distributed components. Growing from the extensive set of GUI controls
built with Microsoft’s ActiveX technology, the COM/DCOM component market is the largest
and most developed. Recently, COM/DCOM component types have broadened beyond GUI
controls to mathematical and statistical calculation, credit card verification, and remote database
access. This includes infrastructure and dozens of business application services.

Like EJB, DCOM components operate in a sort of container: Windows NT. As a component
platform, Microsoft NT supports DCOM components interconnected by a rich set of distributed
services collectively called the Microsoft Distributed Component Architecture (MDCA). COM
and DCOM components are becoming the standard means of building NT applications. They
create a new market for component design, development, and delivery on that platform. COM
and DCOM dominate the desktop and workgroup environments, especially in organizations
committed to NT.

D.2.2.3 Software Package Components

Packages such as PeopleSoft, Oracle Financials, and Baan are some of the largest software
systems in operation. The burden of keeping these packages integrated, maintained, and updated
led the package vendors to devise component strategies. The package component technologies
provide customers with faster and cheaper ways to deploy and update package applications.
Package components permit incremental upgrades and integration of parts from other vendors.
However, working with package components has uncovered some important lessons.
Organizations soon wrestle with the complex task of managing package component
configurations and upgrades.

The major ERP vendors are starting to explore repository technology as a means to better manage
their component configurations. Through the DCOM Component Connector, SAP uses MS
Repository to store information about business API (BAPI) objects and make them accessible to

Project EASI/ED D-13 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

Independent Software Vendor (ISV) tools. More information on the MS Repository may be
found in subsection D.2.3.3, Component Repository and Configuration Management. Other
packages, such as those from Siebel and Lawson, are built around the Microsoft DCOM
component model and Microsoft repository.

D.2.2.4 Development Tool Components

Model-based development tools may be used to create components and to define their interfaces.
Most design tools use Universal Modeling Language (UML) to store and retrieve component
definitions. Development tools create a component by modeling it, creating the code, and then
building the component for distribution. Using development tools in this way ensures that the
following key principles of component-based development are honored:

• Component specification is separate from design and implementation
• Design focus is on the interface
• Behavior of the component is formally documented

Examples of development tools that support components include products from Platinum
Technology, Forte Software, and Sterling Software. Platinum Technology offers Paradigm Plus
for CBD, based on the Catalysis interface-based design methodology. Forte creates applications
from the start as a collection of cooperating components. These components can run locally or
remotely, connected by several standard protocols. Components created outside Forte, for
example, EJB or COM/DCOM components, can be integrated directly with Forte components.

Sterling Software presents two different approaches to building components. The first approach,
embodied in the COOL:Spex tool, uses Catalysis. The second approach, employing COOL:Gen,
is based upon Sterling’s CBD96 component standard. CBD96 describes the means of creating,
specifying, and using components in COOL:Gen. CBD96 includes a documented set of
conventions, naming standards, and best practices.

At the moment, the “commodity” software development tools cannot accept components
constructed by the model-based development tools. For example, Visual Basic cannot exchange
component descriptions with COOL:Gen. The COOL:Gen component marketplace is thus limited
to components created by the COOL:Gen tool. Over time, as more components are delivered
using EJB and COM, the vendor-specific components will be caught in a shrinking market. In
response to this shrinking market, tool vendors will begin to sell their components through the
same channels that EJB/CORBA and COM/DCOM components are sold, and will gradually
transform their products away from proprietary models to adopt the commodity component
standard.

In light of the four strategic directions just described, a life cycle and tools to support CBD are
the discussed in the subsections that follow.

D.2.3 CBD Tools

Designing and developing components requires the support of both methodologies and tools.
Component methodologies are discussed in subsection D.2.4. This subsection describes tools
supporting CBD within the context of a life cycle that consists of three major activities: (1)
building components, (2) finding components, and (3) using components. The tools supporting
CBD are described in the following subsections:

• Subsection D.2.3.1 Component Modeling

Project EASI/ED D-14 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

• Subsection D.2.3.2 Component Construction
• Subsection D.2.3.3 Component Repository and Configuration Management
• Subsection D.2.3.4 Component Assembly
• Subsection D.2.3.5 Component Integration

Figure D-1 graphically depicts the categories of component tools.

Component
Assembly

Component
Integration

Component
Modeling

Component
Acquisition

Component
Construction

Legacy
Components

Market
Component Supply

Application
Construction

In-House
Component SupplyRepository

Component
Configuration

Repository and
Configuration
Management

Rpository
Management

Figure D-1: Component Tool Categories

In the subsections that follow, the tools for CBD are described in further detail.

D.2.3.1 Component Modeling

A model is a technical language and notation that helps developers specify, visualize, and
document software systems. UML is transforming the modeling tool market. UML is both a
language and a notation. It allows designers to share modeling information among many tools. A
common modeling language such as UML offers these benefits: interoperable tools, a common
language to describe software systems, and a means to plug in standard groups of components.
UML also facilitates communication between the developer and the client, facilitates reuse,
provides a single means for describing components as well as indexing their catalogs, and enables
the exchange of model data among tools. UML, by its design, can be stored to and retrieved from
a relational database.

While UML is gaining increased popularity, it suffers from two problems. First, business process
modeling and database design are extensions to the basic UML capability and have not been fully
integrated into its other capabilities. Secondly, components are not well supported by the basic
releases of UML. (UML components in the 1.0 release of UML are not really components at all -
they are packaged objects.) Generally, modeling tools should detect components and interfaces
early in the business process modeling stage. The D’Souza Catalysis method, implemented in
tools from Sterling and Platinum, is currently the leading means for identifying components early
in the development life cycle. More information on Catalysis may be found in subsection D.2.4,
Methodologies for Component Design . Table D-4, below, presents tools and technologies for
modeling components and their interfaces.

Tool Name Description Vendor

Project EASI/ED D-15 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

Tool Name Description Vendor
COOL:Spex COOL:Spex is an implementation of the

Catalysis component modeling methodology,
complete with the required UML extensions.
Once component interface models have been
identified and specified in COOL:Spex,
models are handed off to downstream tools
for generating the components.

Sterling Software
www.cool.sterling.com/cbd

Delphi Component modeling support for the Delphi
application development and deployment
environment. Support for Delphi components
only. Not UML-based.

Inprise
www.inprise.com

Forte Supports component modeling within the
Forte application environment. Forte
applications can include EJB/CORBA and
COM/DCOM components, but the Forte tools
do not create these components. The
component models used by Forte may be
exported in the UML format.

Forte Software
www.forte.com

Paradigm Plus Tool for component modeling within a full
development life cycle. Supports UML
extensions for Catalysis methodology.

Platinum Technology
www.platinum.com/dreamteam

Rational Rose Tool for component modeling within the
context of a full development life cycle.
Components identified through the Rational
Unified Methodology are specified in
extensions to UML.

Rational Software
www.rational.com

SELECT
Enterprise

An implementation of the SELECT
Perspective Method for component design
supported by the SELECT Component
Manager. More information on SELECT is
found in Table D-6 Component Repository
and Configuration Management.

SELECT Software
www.selectst.com/component

SoftModeler /
Business

Java tool for the modeling, design, and
deployment of EJB and JavaBeans
components. Supports UML notations for
components (including Use Cases) and
component distribution (local and remote
methods and properties both in Class /
Component diagrams and Sequence
Diagrams).

Softera, Ltd.
www.softera.com/products.htm

UNIFACE Tool for component modeling for the
UNIFACE application environment. No
EJB/CORBA or COM/DCOM support.

COMPUWARE
www.compuware.com

Table D-4: Tools for Component Modeling

Project EASI/ED D-16 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

D.2.3.2 Component Construction

Component construction tools support the process of creating the components themselves. This
contrasts with component assembly tools that create an application by snapping together a series
of existing components.

A complete component consists of the following elements:

• Model-based specifications.
• Native specifications (specifications in a specific programming language).
• Interfaces for the different component models it supports.
• A means of testing the component.
• A digitally signed certificate guaranteeing that the component conforms to the

specification.
• Documentation for the interface, the services of the component, and the process by which

the component was created.

Component construction tools are in their early stages of development. The programmer still
does most of the work creating the component parts and gathering them together. Sterling’s
COOL:Gen can construct components using the CBD96 standard. Forte software can construct
components for use in their own environment. Component construction tools from Sun
Microsystems, IBM, and Sterling should be offered in early 1999. Table D-5 describes tools for
constructing components.

Tool Name Description Vendor
[Internal Sterling
Product Name]

Tool for model-based EJB construction.
Not yet released as of the date of this
publication.

Sterling Software
www.sterling.com

AION Integrated development environment for
rule-based applications. AION components
may include interfaces to CORBA, DCOM,
IBM Encina, and BEA Tuxedo.

AION division of Platinum
Technology
www.platinum.com/products/
appdev/aion_ps.htm

COOL:Gen Tool for model-based development, closely
aligned with TI/IEF and information
engineering. Used as a tool to develop for
the CBD96 component standard.

Sterling Software
www.sterling.com

EJB
Development
Kit

Container generation tools, EJB server. IONA Technologies
(acquired from EJBHome in
February 1999)
www.ejbhome.com

JavaWorkshop
and JDK

EJB construction tool. Sun Microsystems
www.sun.com

Table D-5: Tools for Component Construction

Project EASI/ED D-17 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

Tool Name Description Vendor
JBuilder Visual Java development tools with

capability of creating EJBs.
Inprise Corporation (formerly
Borland)
www.borland.com/jbuilder/

jBusiness Encapsulates enterprise data and processes
into Java-based Enterprise Business Objects
(Novera-specific components) compatible
with CORBA and EJB. Integrates with Sun
NetDynamics application server announced
in February 1999. The fate of the existing
Novera application server is unstated.
Special attention to the management of
distributed applications. Designed as an
application packaging, deployment, and
management environment, not a Java
development environment.

Novera Software, Inc.
www.novera.com

jDeveloper Java and EJB development environment. Oracle Corporation
www.oracle.com

OrbixStudio
Graphical Server
Builder

Components for CORBA-based middleware
may be identified and constructed using the
Graphical Server Builder within
OrbixStudio. No UML, EJB, or
COM/DCOM support.

IONA Technologies
www.iona.com

PowerJ Java development system including support
for JavaBeans and (future) EJB.

Sybase Corporation
www.sybase.com

StructureBuilder A visual, model-based component and
application development tool for
EJB/CORBA and JavaBeans. Does not
specify support for a component
development methodology.

Tendril Software
http://www.tendril.com

Visual Café
Symantec

Development environment for Java and
EJB.

Symantec
www.symantec.com

Visual J++ Visual development environment for Java.
Includes the many Microsoft extensions to
Java that impact code portability.

Microsoft Corporation
www.microsoft.com

VisualAge for
Java

Java development and EJB construction tool
designed specifically for large scale team
development. It is built around a shared
code repository.

IBM Corporation
www.ibm.com

Table D-5: Tools for Component Construction, continued

Note: A growing market for EJB means the list of supporting tools changes often. A current list
may be found at java.sun.com/products/ejb/tools1.html.

D.2.3.3 Component Repository and Configuration Management

Repositories are shared databases designed to facilitate component sharing and tool interoperation
across the development life cycle. “Best-of-breed” tools can be selected for each situation when
models can be shared among all the tools. Repositories also promote team-based development,

Project EASI/ED D-18 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

resource management, and dependency tracking. A well run, well-institutionalized repository is
essential for component development, software reuse, and legacy integration.

A repository provides the necessary infrastructure for effective component management.
Repository-based development allows the sharing of application files among development teams.
Advances in middleware technology take this concept even further by promising the sharing of
information (components) over the World Wide Web (WWW). Repository-based component
management offers developers at multiple sites the ability to cooperatively manage their shared
software assets and to thereby realize the full benefits of CBD. Key features of the repository that
support component-based development include:

• Synchronized Component Views - the component specifications, models, source code
and executable must be kept synchronized in the repository.

• Dependencies and Compatibility - groups of components used together may include
dependencies that must be tracked and communicated to component developers and
application assemblers.

• Version Control - versions of a component must be managed and tracked through the
repository.

• Backward Compatibility - as a component is enhanced, its name must be tracked. The
name must be changed if it is no longer compatible with earlier versions.

• Publish, Catalog, and Notify - publishing components allows easy search and retrieval
for both the component specification and the various implementations. Notification
linked to the publishing process enables developers and component assemblers to become
aware of components in their area of interest.

• Extended Search - ideally, searches for components should extend across local
boundaries to external repositories and custom developers.

• Ownership and Change Control - an owner who is responsible for the maintenance and
support of the component must be associated with a component .

• Component Usage Metrics - the repository must track component usage for the
purposes of licensing, version control, problem notification and “recall”, and
enhancement notification.

Among industry repositories, the Microsoft Repository is a key driver in the application
development market. The MS Repository offers support for UML and database schema models.
It provides a point of integration for tools including application modeling, application testing,
debugging, diagramming, performance testing, defect tracking. In the CBD marketplace, MS
Repository is becoming the de facto standard for online component catalogs and specifications.

The MS Repository is based on an open database connection (ODBC) database, rather than an
OO database management system (ODBMS). Some competitors in the pure object-oriented (OO)
repository market are turning to ODBMSs as an implementation solution (e.g., IBM
TeamConnection using ObjectStore and Unisys UREP using Versant). However, other vendors
such as Oracle have had success building repositories on top of relational engines, so there is no
clear advantage to an OO backend. Other competitors including Platinum Technology's

Project EASI/ED D-19 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

Repository/Open Enterprise Edition, Viasoft/R&O's Rochade, and Softlab's Enabler are not using
ODBMSs, but instead rely on either relational databases or proprietary file systems.

Table D-6 provides a list of repository technologies.

Tool Name Description Vendor
MS Repository Code and model repository, native to

Microsoft development tools and NT; ported
to MVS and Unix by Platinum Technology.

Microsoft
www.microsoft.com

PLATINUM
Repository

PLATINUM development and metadata
repository.

Platinum Technology
www.genevasoft.com/product
s/dataw/reoeetk1.htm

Intersolv Code repository with maintenance tools. Intersolv
Rational
Repository

Code repository with maintenance tools. Rational Software

TeamConnection IBM’s development repository uses the
ODBMS backend ObjectStore.

IBM Corporation
www.ibm.com

Universal
Repository
(UREP)

The Unisys software repository. Backend is
the Versent ODBMS.

Unisys Corporation
www.marketplace.unisys.com/
urep/capguide/prodove.html

SELECT
Component
Manager

Component Manager enables developers to
store, catalog, search and retrieve
components. It includes a facility for
registering interest in catalogs of
components and for event notification. It
links multiple repositories over an intranet or
the Internet as well as to the MS Repository,
Unisys UREP repository, and the Softlab
Enabler.

Select Software
www.selectst.com/component/
Default.ASP

Table D-6 Component Repository and Configuration Management

D.2.3.4 Component Assembly

Creating applications from components is referred to as component assembly. Component
assembly combines the building of the new application’s workflow with creating the user
interface, connecting to legacy applications, and attaching to services provided through
middleware and other enterprise service providers.

There are several ways to accomplish component assembly:

• Certain small projects may begin with component assembly. If components can be found
by designers, or in some cases by business users themselves, that implement clearly
understandable business-oriented interfaces, then assembly may be performed
automatically by tools that “wire together” the components to produce an application.

• Complex applications may apply “glue logic” to underlying frameworks and components.
Skilled developers would be required to operate advanced CASE tools, OO development
systems, or other component assembly tools that permit linking components using
scripting languages. For example, MS Frontpage, a layout and component assembly tool
for Web applications, uses Visual Basic to define glue logic around ActiveX controls and
components.

Project EASI/ED D-20 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

• Workflow management applications may be assembled by providing a workflow
manager with the details of the business process it is required to support. Within the
workflow manager, human and computer activities are fully qualified and linked to the
underlying software components that provide application support.

Tool support is rudimentary. Most component assembly occurs in development tools, which can
limit the choice of components to those created by a particular tool. Many of the component
development tools listed in Table D-5: Tools for Component Construction, continued

Tool Name Description Vendor
CBToolkit Component-based application development

environment. Generates the code necessary
for components to be managed in the
Component Broker environment.

IBM
http://www.software.ibm.com
/ad/cb/cbfactj2.html

UNIFACE
Assembly
Workbench

Assemble and manage components of the
following types: UNIFACE, Visual Basic,
Java, 3GL, CORBA and COM/DCOM.
Displays detailed component interaction
diagrams

COMPUWARE
www.compuware.com

Visual Studio Visual environment for component
development. Integrated with the Visual
Component Manager for finding, tracking,
and cataloging components.

Microsoft Corporation
msdn.microsoft.com/vstudio/
downloads/solutions.asp

Visual Concepts Visual Concepts is a repository-based tool
for assembling ActiveX, CORBA, and Java
components visually. EJB support is
planned for the future.

SuperNova
www.supernova.com

Conductor Visual application construction tool for
Forte components. Includes EJB/CORBA.

Forte
www.forte.com

Table D-7: Tools for Component Assembly

D.2.3.5 Component Integration

Component integration software solves the problem of connecting components of different
component models across different platforms. Several types of software are used for connecting
components. These include ERP packages such as SAP and PeopleSoft, transaction processing
monitors (TPMs) such as BEA Tuxedo, and object request brokers (ORBs) such as Iona’s Orbix.
Combining messaging, transaction monitors, and object request brokers in one package, object
transaction monitors (OTMs) include BEA’s WebLogic Enterprise, IBM’s Component Broker,
and Microsoft’s Transaction Server (MTS).

Complex environments with several standards in place may require more than one or two
integration tools to connect all the needed systems. Supporting several of these tools is a technical
challenge. Vendors are gradually gravitating to a small number of standards, but this
consolidation will take time.

Table D-8 presents tools for component integration.

Project EASI/ED D-21 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

Tool Name Description Vendor
BEA M3 CORBA ORB with CORBA Object

Transaction Service, compatible with
Tuxedo; Java based; EJB interface.

BEA Systems
www.beasys.com

BEA
ObjectBroker

Implements Object Bridge to enable bi-
directional communication between DCOM
and CORBA. Refer to the entry for Object
Bridge in this table for more information.

BEA Systems
www.beasys.com

BEA Tuxedo TP monitor includes an EJB container;
includes connectors to other component
models

BEA Systems
www.beasys.com

BEA WebLogic
Enterprise

Was WebLogic; started life as a deployment
platform; WebLogic Enterprise is a merge
of the BEA WebLogic Web application
server with BEA M3TM object transaction
manager (OTM). The BEA WebLogic
Enterprise provides advanced Java
development services, Web integration,
support of CORBA and Enterprise
JavaBeans (EJB).

BEA Systems
www.beasys.com

CBConnector,
CBToolkit

Component Broker Connector and the
supporting Component Broker Toolkit;
middleware and application development
technology. EJB support

IBM
www.software.ibm.com/ad/cb
/cbfactj2.html

WebEnterprise Integration adapters to packages, host
systems, COM/DCOM, CORBA/IIOP,
JavaBeans, EJB, BEA Tuxedo, IBM Encina
and MQSeries. Includes Forte Application
Server technologies.

Forte Software Inc.
www.forte.com

Inprise Application integration engine from
Borland. It was first developed as a
deployment platform.

Inprise
www.borland.com

Jacada Connects Jacada Connects to Domino and HTML. CST Inc.
www.cst.com

Jaguar CTI TP monitor serving as EJB container;
connectors to other component models

Sybase Incorporated
www.sybase.com

MTS Microsoft Transaction Server Microsoft Corporation
www.microsoft.com

NetDynamics Java application server with interfaces to
CORBA, SAP, PeopleSoft, RDBMS, and
other enterprise data stores. NetDynamics
began as a Java and EJB deployment
platform, though its system integration
capabilities are widely used today.

Sun Microsystems
www.netdynamics.com
(Sun purchased NetDynamics
in 1998)

Table D-8: Tools for Component Integration

Project EASI/ED D-22 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

Tool Name Description Vendor
Netron
Frameworks

A framework for distributed systems. One
may produce components from legacy
COBOL or use Netron to derive business
rules from code. Components are specific
to Netron. Netron connectivity framework
and custom application framework are
proprietary.

Netron, Inc.
www.netron.com

Object Bridge Mechanism for bi-directional
communication between DCOM and
CORBA. Other Visual Edge products link
business components with SAP.

Visual Edge
www.vedge.com

Orbix 3 CORBA middleware IONA Technologies
www.iona.com

OrbixOTM 3 Enterprise middleware suite IONA Technologies
www.iona.com

Persistence
PowerTier

PowerTier Live Object Server for EJB is an
application server using the same
technology as Persistence PowerTier C++.
Native connectivity to databases.

Persistence Software, Inc.
www.persistence.com

UIE Universal Integration Engine, an EAI
solution. EJB support in the future

SuperNova
www.supernova.com

UNIFACE UML-based repository that links UNIFACE
to leading object modeling and CASE tools
such as Rational Rose.

COMPUWARE
www.compuware.com

UNIFACE
Universal
Request Broker

Integrates UNIFACE and non-UNIFACE
components in distributed environments.
Supports COM/DCOM, CORBA, and
JavaBeans. Includes a Web application
server; TP services through a link to Tuxedo
and Encina.

COMPUWARE
www.compuware.com/produc
ts/uniface/station/reading/read
_arc.htm

Table D-8: Tools for Component Integration, continued

D.2.4 Methodologies for Component Design

Component design is the process of identifying reusable chunks of functionality within a large
software system. The three central questions of component design are:

1. What functions within a system should be grouped together into a component?

2. What are potentially useful interfaces for the component?

3. How well can the interface and its functionality be used in future systems?

Designing components requires attention to three views of the system: the what, who, and how.
These are described as follows:

Project EASI/ED D-23 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

• What - describes the behavior of system elements participating in some joint activity. To
describe any single element (or component), its context must be understood. This level
of description can represent the design for some higher level. At the high level, this is
domain modeling.

• Who - determines and assigns responsibilities among the participants and specifies the
interactions underway during each joint activity. This description leads to defining the
services provided by each responsible entity. These services are composed into
collaborations that implement the joint activities (now called transactions).

• How - refines these collaborations and specifies the implementation of services for each
component. A description of these implementations can be refined further with what,
who, and how. Successive refinement of who and how together is the process of
development.

These three system views together describe a Use Case. A Use Case describes the joint behavior
of a set of objects or components. It may be refined both in terms of the granularity of
interactions of the objects, as well as in terms of the actual objects providing the services
required. The rigorous specification of Use Cases, as formalized in this what/who/how model,
leads to the well-specified interfaces required by components. Component modeling is performed
within a larger context of component-based software development. Component modeling is the
first step in the component life cycle. Figure D-2 below, presents the interconnections among the
stages of component modeling and construction.

Domain Modeling
Domain Model
Type Diagram

Collaboration Diagram
Use Case Diagram

Component Modeling
Context Diagram
Interface Diagram

Component Diagram

Implementation
Design

Component
Coding

Define interfaces,
organize interfaces
into components

Implement components
through interfaces

Define important
elements and their
interrelationships

Business Modeling
Process Model
Requirements

Define processes
and requirements

Legacy Code
Wrapping

Legacy System
Integration

Component
Architecture

Figure D-2: Component Modeling and Construction

Project EASI/ED D-24 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

Each element of Figure D-2 is described in the subsections that follow.

D.2.4.1 Business Process Modeling and User Requirements

This is not necessarily the start of every project, but when required, business processes and user
requirements are modeled and recorded. This may include as-is processes modeling and
documentation of the supporting applications, as well as any number of phased, to-be models of
re-engineered target processes and applications.

D.2.4.2 Domain Modeling

Domain modeling begins the process of determining reusable parcels of services. An OO
approach is used to understand requirements and translate these requirements into interface
descriptions. Tasks within Domain Modeling include Use Case Modeling, Collaboration
Modeling, and Type Modeling.

When objects model the domain, and their behavior is observed and analyzed during key events
and actions for the domain, interface specifications can be derived and refined as the basis for
component specifications. As the interface specification model is constructed, sufficient detail is
recorded about the behavior of the operations to allow matching against catalogs of already
defined interfaces (i.e., components). When a close match is found, the interface that has been
previously defined may be reused as part of the specification of the interface under construction.

As the interface specification is passed to teams who will implement the interface, they check for
enough detail for unambiguous construction. In effect, the interface is the contract between the
implementation team and future users of the component. These activities are enhanced by two
kinds of reusable specifications: (1) domain model patterns called frameworks containing generic
collaborations and types, and (2) already-published interfaces used in specifying new ones.
When an already-published interface is reused, the designers can look for potential component
reuse.

D.2.4.3 Component Modeling

During component modeling, the overall architecture of the application is defined. Interfaces will
first be allocated to components. Interface catalogs will be consulted to find components that
support them. The protocols of detailed collaborations will be translated into interactions
between the components comprising the applications. Extensions to specification models of
interfaces for existing black and white box components may be made here. Architectural design
patterns delivered frameworks containing generic component collaborations will be used to guide
component architecture design.

D.2.4.4 Implementation Design

Once the overall component architecture is decided, implementation projects may begin to deliver
the required components. Three main categories describe these projects:

• New build projects, in which new components are built using software development
tools. If an OO programming system is used, classes will be designed to do the job,
perhaps assisted by OO design tools, and various class libraries. Design patterns
delivered as framework models and code can speed up the process. If an OO
implementation approach is not viable, other mechanisms will be used to accomplish the

Project EASI/ED D-25 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

implementation to fit the interfaces specification (for example, a procedural Information
Engineering-based approach).

• Acquisition projects to outsource, purchase, or lease components that meet interface
specifications that cannot, or should not be built with in-house resources. This may
involve browsing or searching in component catalogs. Any wrappers or extensions to
acquired packages and components will be designed and implemented at this time.

• Legacy harvesting projects, in which use is made of existing application resources to
satisfy the needs of new applications. This may be part of a transition strategy, in which
older application and packages are analyzed and then discarded, wrapped, or re-
engineered to produce components that support interfaces required by the emerging,
newer applications.

What has been described above are the ideas behind the Catalysis method for component design.
Catalysis is the leading methodology for the design and development of components. Catalysis
differs from most OO methods in the way it defines components. This is important since, as
observed earlier, a component is not necessarily an object. Clear definition of services is
essential to good component design. Catalysis focuses on the definition of each component’s
services, not just their interactions as object methods typically do. The result is clear, specific
service definitions. The Catalysis process, however, is not a full life cycle methodology. The
method begins at the creation of domain models and ends just short of implementation. Therefore
it meshes well with full life cycle models (e.g., Method/1), leaving analysis, implementation, and
testing to the full life cycle methodology. This discussion leads directly to specific
recommendations to integrate Catalysis into the CBD and life cycle management strategy of SFA.

D.2.5 Recommendations to SFA

Designing and creating components is a relatively new discipline and industry practice is still
being defined and refined. CBD methodologies are generally an assembly of techniques closely
monitored by technical experts in competing companies. To provide SFA with defensible
recommendations for CBD, the following requirements were defined:

• The CBD approach and method should not be proprietary, although specific
implementations may be proprietary.

• Supporting technical tools for the approach and method should be publicly available,
preferably from a number of competing sources.

• Notations and symbols used should be publicly available.

• The CBD approach and methods should harmonize with current and planned ED
guidance, recommendations, and standards.

Facing SFA is the problem of joining a CBD method with the ED/SLCDM. We recommend that
the ED/SLCDM be supplemented in the area of component design and recommend Catalysis for
this purpose. Catalysis is the dominant methodology for component design. Other approaches
are less complete or tie component development too closely to object-oriented design.

In this scenario,

Project EASI/ED D-26 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

• ED/SLCDM provides the overarching SFA development life cycle, linked to
management and reporting functions, and business and domain modeling is performed
under the ED/SLCDM;

• component modeling and specification are conducted using Catalysis; and

• the ED/SLCDM is used for component implementation, taking component specifications
through outsourcing, reuse, re-engineering, or development, into operation.

D.2.6 Tool Support for Catalysis

This subsection addresses tool support for Catalysis. Catalysis, described in the earlier subsection
on component-based development, is a methodology for creating components. While it is not tied
to OO methods, it does expand on OO design concepts and uses UML with extensions as its
notation. In its initial form, Catalysis was a “paper and pencil” methodology without the support
of a software package. Its author, Desmond D'Souza, created a software implementation of
Catalysis when he worked for ICON Corporation. The package was acquired in 1998 by Sterling
Software and was renamed COOL:Spex.

Catalysis is based on the notion of interface-based design. An interface is a contract between the
supplier of the component services and the users. Like a contract, an interface specification must:

• be clear and explicit;
• provide a definition of terms in a common vocabulary;
• describe the roles and responsibilities of each part of the software involved; and
• explain the details of the functionality.

The component’s interface captures everything that its potential clients can rely on. Expressing
the interface clearly and completely is essential to the component’s design, and is the reason that
Catalysis focuses so heavily upon interfaces.

While Catalysis uses UML diagrams, most OO tools are not complete enough to support
Catalysis without the use of workarounds. The usual mechanism for extending a UML tool is
through UML stereotypes. Stereotypes would allow Catalysis modeling elements to be classified
as a particular type by these general-purpose UML modeling tools. However, because of the
following drawbacks with the use of stereotypes, general-purpose UML tools are not suitable for
Catalysis:

1. The meaning of the stereotyped modeling elements cannot be defined because there is no
underlying metadata.

2. Additional modeling semantics cannot be understood. For example, Specification Types
cannot have operations but Classes can. Ensuring correctness of the model would require
additional code solely to support the stereotyped element within the tool.

3. Because of the way stereotypes are stored, typographical errors result in more than one
concept defined.

4. Code generators in UML tools would not recognize the Catalysis component
specification.

For full use of Catalysis, the following UML diagrams are required: Component Architecture,
Collaboration Diagram, Use Case Diagram, Interface Diagram, and Type Diagram. Each of these
diagrams is discussed below.

Project EASI/ED D-27 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

• A Collaboration Diagram captures and models the dynamic behavior of a domain,
including actions between elements of the domain.

• A Interface Diagram specifies the detailed underlying behavior of an interface including
pre- and post-conditions.

• A Type Diagram is visual modeling support for recording the elements of interest within
a domain. Components may be visually identified in their environment. Through the
Type Diagrammer, terms common across an interface can be identified and defined as a
contract.

• A Component Specification by Interface matrix documents which component
specification offers which interfaces.

• A Collaboration by Collaboration matrix documents which collaboration is a refinement
of another collaboration.

Tools supporting part or all of Catalysis are described below.

COOL:Spex

COOL:Spex is a product of Sterling Software, acquired in 1998 from ICON Corporation. It
extends the Catalysis methodology with elements of the Sterling Advisor methodology, covering
business modeling to code generation.

The model-based approach embodied in COOL:Spex has the advantage that the specification of
components can be very precisely defined. Also, the semantic relationship between the
specification’s operations and type model is tightly integrated. Furthermore,

• Models of interfaces provide more easily understood semantics of behavior.
• Interfaces with models are easier to inspect to identify if they might be useful behavior

bundles.
• Components whose interfaces have model information are self-describing.
• The impact on a model using someone else’s interface is easier to gauge if that interface

has a (semantic) model.

Component specifications are accessed through a repository, which, in the case of COOL:Spex, is
the MS Repository.

Rational Software

Rational’s Unified Process is a framework that covers the complete software life cycle. The
solution, based upon components, relies heavily on UML. Rational Rose 98 includes the
Behavioral Elements package, a set of extensions to UML. This set of UML extensions supports
the Catalysis methodology for component modeling.

Rational adds these diagrams through their Unified Process:

• Use Case Diagrams
• Class Diagrams
• Component Diagrams
• Deployment Diagrams
• Sequence Diagrams
• Collaboration Diagrams

Project EASI/ED D-28 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

• Statechart Diagrams
• Activity Diagrams

The web site for Rational Software is www.rational.com/products/rup

Platinum Technology

The Platinum Technology Inc. PARADIGM Plus is a process framework and tool that, through
UML extensions, supports component development and can be used with the Catalysis
methodology. Desmond D’Souza, the inventor of the Catalysis method, now works for Platinum
Technology, Inc.

The web site for Platinum Technology is www.platinum.com.

Select Software Tools

The SELECT Perspective Method is a general component design method supported by the
SELECT Component Manager. The SELECT Perspective incorporates a collection of industry
best-practice modeling techniques that are applied and adapted using process templates within an
architectural framework across a wide range of developments in a component-based setting.
SELECT is in the process of merging Catalysis concepts into their own component methodology.
The SELECT web site is www.selectst.com/component.

Project EASI/ED D-29 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

D.3 Introduction to UML

The Unified Modeling Language (UML) is a common modeling language for building software
systems. This subsection introduces modeling and UML, and why UML is important to
Blueprint delivery within SFA:

• Subsection D.4.1 Modeling and UML
• Subsection D.4.2 UML and SFA Software Development
• Subsection D.4.3 UML Documents
• Subsection D.4.4 Terminology

D.3.1 Modeling and UML

Modeling languages and supporting tools specify, construct, visualize, and document the design
and construction of a software-intensive system. Models are basically essential to successful
software development in large organizations. Specifically, models function to fulfill the
following.

• preserve requirements;
• facilitate communication;
• help manage complexity;
• capture essential parts of a system;
• specify business processes;
• define software architecture; and
• promote reuse.

The need for modeling software systems has been so great that dozens of modeling languages
have been invented. Fortunately it is not necessary to learn them all. Over the last three years
these modeling languages have converged in the development of UML. UML has captured
virtually all of the important work in modeling, with special emphasis on OO and CBD methods.
UML includes the methods and notations of the three important thought leaders in OO design:
Grady Booch, Ivar Jacobson, and John Rumbaugh. UML includes elements for the Catalysis
method for component design. The result of the merge of these modeling languages and methods
is a single, widely applicable modeling language for users of these and other methods.

The UML meets the following four design goals:

• UML enables the modeling of systems (not just software) using object-oriented concepts
• UML establishes an explicit link between system concepts and requirements with the

implementation of these concepts and artifacts in executable code
• UML addresses the need to manage problems of scale in complex, mission-critical

systems
• UML defines a modeling language usable by both people and machines

In the next subsection, the link between the UML and software development is explored.

Project EASI/ED D-30 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

D.3.2 UML and SFA Software Development

Within the disciplines of software development, UML provides the following benefits to SFA
projects:

• Applicability to different development life cycle methodologies, including the
ED/SDLCM

• Support for SFA software architecture directions, including CBD
• Design for shared repositories to support software development in a distributed

environment

UML focuses on a standard modeling language, not a standard process. Although the UML must
be applied in the context of a process, different development projects require different processes.
UML provides consistency over the different processes by providing a common modeling
language (a common semantics) and a common notation (a picture of the semantics). UML fits
well with development processes that are architecture-centric, iterative, and incremental.
ED/SDLCM deliverables include diagrams that may be modeled with UML-based tools.

The UML specifies the notation and semantics for eight core diagrams employed in building
software system models. These models are included as a reference point for readers who may be
familiar with OO methods, and in order to link them with ED/SDLCM deliverables.

• Requirement Diagrams - Use Case and Class.
• Behavior Diagrams – State Chart and Activity.
• Interaction Diagrams – Sequence and Activity.
• Implementation Diagrams – Component and Deployment.

These diagrams provide multiple perspectives of the system under analysis or development. The
underlying model integrates these perspectives so that an internally consistent system can be
analyzed and built. These diagrams, along with supporting documentation, are the primary
artifacts that a modeler sees, although the UML and supporting tools will provide for a number of
derivative views.

UML provides the following capabilities to support the distributed software development
environment planned for SFA:

• Modeling support for component technology, distributed computing, and frameworks
• A model interchange among a variety of software and design tools
• An interface to repositories for the sharing and storage of models and specifications

The latest release of UML includes the following new concepts:

• Extensibility mechanisms
• Patterns/collaborations and activity diagrams for business process modeling
• Concurrency and distribution for modeling ActiveX/DCOM, EJB and CORBA
• Refinement to handle relationships between levels of abstraction
• Interfaces and components
• Constraint language

Project EASI/ED D-31 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

Component-based development methods, including Catalysis, the Rational Unified Process, and
the SELECT component development framework, exploit the new UML support for concurrency
modeling, patterns, and interfaces.

D.3.3 UML Documents

As the sponsoring organization for UML, the Object Management Group (OMG) performs two
major supporting functions. First, the OMG manages the standards development process by
which the UML evolves. Second, OMB maintains the core UML documentation presented in the
list that follows.

• UML Semantics - provides the abstract syntax, model rules and constraints, and
semantics.

• UML Notation Guide - presents the UML notation with examples.
• UML Extensions - documents the extensions to UML for business modeling and for

Rational Software’s development methodology.
• UML Standard Elements - describes the UML elements and their interrelationships.
• UML Glossary - defines words related to UML and to system modeling in general.

These documents are accessible from the OMG web site, www.omg.org.

D.3.4 Terminology

Definitions for words and phrases commonly associated with objects and modeling are included
in Table D-9 as a reference.

Term Definition

Class
A programming language construct for defining how the state and behavior of a set of
objects is implemented. A class may implement multiple types, and vice-versa.

Collaboration

A set of transactions which have some common purpose, with a common level of
abstraction or detail, and involving objects playing different roles; often corresponds to
a temporal relation between a set of finer-grained transactions which meets the
specification of some higher-level transaction.

Component
An object, possibly complex, which has definite responsibilities assigned to it, and
which will have an implementation to support one or more interfaces. Not all
components will be implemented as instances of classes.

Design
A recursive process of refinement and decomposition of transactions: A distinct level of
description that addresses how the required behaviors will be provided by some pattern
of lower-level collaborations and finer-grained components.

Design Pattern
A proven design technique, presented with a discussion of its applicability and trade-
offs, which suggests a transformation from a specification to the next level of design, or
from one design to another.

Design Type
A type introduced to circumscribe some portion of the (next level of) implementation,
with an interface of service transactions. Design types take part in transactions.
Members of this type will be identifiable components in the implementation.

Model Type
A type introduced as part of a specification model, purely to support a specification.
Model types do not directly take part in transactions, but they can have queries,
invariants, etc. Also called specification type.

Table D-9: Modeling Terms and Definitions

Project EASI/ED D-32 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

Term Definition

Object
An individual with identity and behavior; a member of some types; an identifiable
component with an interface; an instance of a class.

Query
A hypothetical read-only function modeling the state of an object and used only in
pre/post conditions; often depicted as a diagrammatic link or a typed attribute.

Role
A place for a participant in a collaboration; a view of an object from the perspective of
some other object which collaborates with it. The mapping from design object to role is
many-to-many at any point in time, and is dynamic.

Snapshot/
Instance diagram

A diagram of an instantiation of a type model at some instant in time, showing the
interesting aspects of the objects, and the results of their specification queries (depicted
as links and attributes).

Specification

A description of guaranteed behavior of some object, together with the conditions under
which that behavior is guaranteed; often described with pairs of pre-conditions and post-
conditions in terms of a specification model, sometimes with an associated temporal
constraint.

Specification
Model

A set of queries - called specification queries - which supports some specification; often
depicted as types, attributes, and associations in a set of diagrams.

Specification
Type

see Model Type

Transaction -
joint and service

A unit of interaction or information exchange between participant objects playing some
roles, with a specified effect on those objects. We support both joint transactions
(multiple participants, described symmetrically with no distinguished receiver) and
service transactions (attached to a distinguished receiver which is assigned
responsibility for that transaction). Transactions can be refined in several ways. Our
transactions do not require the atomicity and serializability properties required of
traditional database transactions.

Type
A specification of externally visible behavior of objects - members of that type are all
objects that conform to its behavioral specification. A type makes no statement about
implementation.

Type Model see Specification Model

Use case
A transaction which accomplishes a meaningful objective to an external user of a
system; often a joint transaction, refined to describe the roles that the different
participants play in the collaboration.

Table D-9: Modeling Terms and Definitions, continued

Source: Catalysis

Project EASI/ED D-33 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

D.4 Legacy System Components

In order to meet rapidly changing business needs, organizations will create new software
components and assemble them into new applications. Just as they did when applications were
evolving to client/server, managers are forced to address the question of how to best move their
application portfolios forward to the new environment. Making the change must be gradual and
carefully managed. Not every legacy system will make the transition. As desirable as it might be
to convert a legacy application to components, there will be no justification without a business
driver. Furthermore, the scale of legacy portfolios means that organizations simply can not begin
again from scratch.

Fortunately, CBD provides a technical means to integrate legacy applications into new systems.
Components make no assumptions about the underlying technology; components are about how
the application’s interfaces are designed, not about how the internals of the components are
implemented.

To provide guidance for the choices for transitioning legacy systems to components, this section
presents an overview of the major considerations:

• Subsection D.4.1 Objectives for Legacy System Components
• Subsection D.4.2 Design Choices
• Subsection D.4.3 Conclusion

D.4.1 Objectives for Legacy System Components

A legacy system can be integrated into component-based systems without necessarily making a
wholesale conversion of the system to components. Five possible objectives drive the
construction of components from legacy applications:

• Reuse. Through reuse, parts of existing applications are transformed into components
and reused in new applications. A key design choice is whether the specific code is to
copied and reused in multiple systems, or whether the application logic is to be converted
to a service and called from systems as required.

• Integration. Through integration, legacy applications are connected to new component-
based systems. To accomplish the integration, an application programming interface is
installed in the legacy code and made accessible to the external component application.

• Replacement. Parts of the legacy application are replaced with new or upgraded code,
designed as components.

• Enhancement. New requirements force new functionality into the legacy system.

• Encapsulation. By inserting an interface, the service provided by a legacy application
(the “what”) is separated out from the way the service is implemented (the “how”).

Clearly, converting an entire legacy application to components would meet all of the above
objectives, but it is usually not necessary to accomplish them all. It is more likely that only a few
objectives are required at any given time, perhaps because resources are short, or the package is
scheduled for replacement shortly.

Project EASI/ED D-34 Version 1.0 (Final)
System-Wide Design Standards Document May 24, 1999

D.4.2 Design Choices

Six different scenarios capture the technical means by which legacy systems are adapted for
component technology. The scenarios are:

• Migration - the application is migrated to a new platform or technology. Unless the new
technology is based upon components, this step contributes little to the component
strategy.

• Wrapping - legacy code is reused by wrapping it in a component interface. Making use
of a tool and this wrapped componentized code, the services can be included in new
component applications.

• Restructuring - legacy source code is restructured into component interfaces and
separate components.

• Enhancement - in the process of creating components, new functionality is added to the
legacy code and presented through the component interface to other applications.

• Legacy Interfacing - an application making use of the legacy application calls it via one
of its legacy interfaces.

• Component Interfacing - an application integrates directly with services presented by
the new component interface.

Among these scenarios, wrapping, legacy restructuring, and component interfacing offer the best
choices for code and service reuse. Integration is best accomplished through wrapping,
restructuring, and either legacy or component interfacing.

D.4.3 Conclusion

Deciding whether a legacy system is candidate for component-based reuse begins with an
assessment of how closely the system meets to-be business and technical requirements. A
system becomes a candidate for legacy component harvesting when it has been through the
Component Design Methodology of subsection D.2.4. With the components identified through
that process, developers can choose the objectives and scenarios for implementing the legacy
components.

